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Review: The Yield Behaviour of 
Polymers 

1. M. W A R D  
Department of Physics, University of Leeds, Leeds, 2 

Recent research on the yield behaviour of polymers is reviewed. Particular attention is 
given to the importance of the hydrostatic component of stress, the viscoelastic nature of 
the yield process, and the behaviour of oriented polymers. 

1. Introduction 
Although the mechanical behaviour of polymers 
is very sensitive to the variables of time and 
temperature, it is convenient to initiate the 
discussion with considerations of classical 
plasticity. We imagine that all our data refer to a 
given strain-rate at a fixed temperature and that 
time does not enter as a variable. It is similar to 
the approach to anisotropic mechanical behav- 
iour in polymers, where one usually starts by 
assuming that all the data refer to a fixed time of 
response under dead loading conditions, for 
example, and then proceeds to an elastic 
analysis of the situation. 

In the case of yield behaviour, this bypasses 
arguments about the observation of yield drops 
in polymers and whether true yield points exist. 
We will assume at this stage that complications 
due to adiabatic heating and geometric effects can 
be ignored and that a yield point can be defined. 

One of the problems in adopting a simple 
approach of this nature is that the whole stress- 
strain curve is in general different for different 
stress fields. In tensile tests a neck is usually 
formed and the yield point defined as the stress 
at maximum observed load. In other tests such as 
compression tests a load drop is often not 
observed and the yield point is then defined as 
the point of intersection of two tangent lines on 
the load-elongation curve (fig. 1). In our dis- 
cussions we will assume that these definitions of 
yield can be regarded as equivalent. 

2. Classical Plasticity 
In classical plasticity, the first aim is to find a 
function of all the components of stress which 
reaches a critical value for all tests. This is the 
yieM criterion, and in its most general form it is 
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Figure I Definition of the yield point as the point of inter- 
section of two tangent lines on the load-elongation curve 
~y is the yield stress. 

a function of all the six independent components 
of stress. We can therefore write the yield 
criterion analytically as 

f(~xx, cryy, ~zz, crxy, Cryz, Crux) = constant. 

The form of this funct ionfcan be restricted on 
the basis of physical conditions. In the prelimin- 
ary discussion we will be considering isotropic 
polymers. This means tha t fmus t  be independent 
of the choice of the cartesian co-ordinate axes 
x, y, z. It must, therefore, be a function of the 
invariants of the stress tensor. 

For  convenience, we can now also refer the 
stresses to the principal axes of stress and the 
stress tensor becomes 
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The yield criterion can therefore be represented 
as a function of the three simplest stress invari- 
ants J1, J2, and Jz. 

We have f(J1, J2, J3) = constant, 

where J1 = (r~ + 0- 2 + 0.3 

= 0.10.20.3 

A further simplification of the yield criterion 
is obtained if we also assume that the yield 
behaviour is independent of the hydrostatic 
component of stress. This has the consequence in 
mathematical terms that the yield criterion will 
be a function of the components of the deviatoric 
stress tensor 0.~{, obtained by subtracting the 
hydrostatic component of stress from the total 
stress tensor. 

0.i j '  ----- 0.ij - -  p ~ i j  
where 

3ij = 1, i = j ; 3 1 j  = 0 ,  i = ~ j .  

In terms of the principal components of stress 
the yield criterion becomes 

f(0.1', cry', 0.3') = constant, 
where 

cri' = 0.I -- P, 0"~.' = 0"2 -- P, 0"a' = 0"a -- P- 
Since 0.1' + 0.2' + 0"3' = 0, the yield criterion 

becomes 
f ( J ( ,  d3') = 0 

where 

J 2 '  = - (0"1' o'2' -t- 0"~.' 0.3' + 0"3' 0"1') 
= ~{(0. /)~ + (0.()~ + (0";)2} 

J 3  ! ~ .  (71 t 0.2 t 0"3 t 

Another simplification of the yield criterion 
can be made. Let us assume that the magnitude 
of the yield stresses in simple tension and 
compression are identical. This means that the 
function f involves only even powers of J3'. The 
simplest possible situation would be that f does 
not involve J3'. 

In metals, the observation in some cases of a 
difference between tensile and compressive yield 
behaviour is known as the Bauschinger effect [1 ] 
and is usually associated with the presence of 
anisotropy. Cold working is considered to 
produce internal stresses, which can be readily 
seen as intuitive grounds to give rise to an asym- 
metry in the situation with regard to tensile and 
compressive experiments. 

This treatment of yield behaviour may appear 
to be excessively formal, but it is intended to 
emphasise the consequences of three physical 
assumptions: 
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(1) Isotropy. 
(2) No dependence of behaviour on the hydro- 
static component of stress. 
(3) Identical yield behaviour in tension and 
compression. 

It is worth noting that an observed difference 
between the tensile and compressive yield stress 
does not necessarily imply that the yield criterion 
involves the hydrostatic component of stress. In 
fact, it has been found that the Bauschinger 
effect in highly oriented polymers is very large 
compared with the effect of hydrostatic compon- 
ent of stress, so that the effect of the latter may be 
neglected to a first approximation. 

On the other hand, the introduction of the 
effect of the hydrostatic component of stress in 
an appropriate manner to represent the observed 
results for polymers, does produce a difference 
between the tensile and compressive yield stresses 
It will be shown that the observed differences 
between the tensile and compressive yield stresses 
in isotropic polymers are consistent with direct 
measurements of the effect of the hydrostatic 
component of stress on the shear yield stress. At 
this point, however, even a first Order 
phenomenological treatment of the behaviour 
will take us out of the realm of classical plasticity 
to considerations of non-linear viscoelastic 
behaviour. 

2.1. Simple Yield Criteria 
1. The Tresca Yield Criterion [2] 
The Tresca yield criterion states that yield occurs 
when the maximum shear stress reaches a 
critical value. In mathematical terms we have 

10.1 - 0.sl = constant 

with 0.1 ) 0"2 ) 0"3" 
This yield criterion satisfies the three simple 

physical assumptions discussed above i.e. 
material isotropy, independence of the hydro- 
static component of stress and identical behaviour 
in tension and compression. 

2. The yon Mises Yield Criterion 
In terms of our development, the yon Mises 
criterion is that the yield criterion is a function of 
J2" only. 
i.e. 

J2' = constant = K 2 say. 

It may readily be shown that this is equivalent to 
(0"1 - -  0"2) 2 + (0"2 - -  0.3) 2 + (0"3 - -  O"1) 2 = 6K2 

which is perhaps a more familiar form of this 
yield criterion. 
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2.2 Combined Stress States 
Having prepared the ground to a certain extent, 
we will now consider the yield behaviour of 
polymers and in particular the response of a given 
polymer to different stress states and to combined 
stress states. I t  is then very useful to translate 
these analytical considerations into their geo- 
metrical consequences i.e. to consider the 
geometrical shape of the yield criteria in various 
chosen co-ordinate systems. We wilt consider two 
cases. 
1. Principal stress space. 
2. The Mohr  circle diagrams. 

1. Principal Stress Space 
The consequence of the assumption of independ- 
ence of hydrostatic pressure p means that er~, cr 2 
and aa in the yield criterion can be replaced by 
al + P, ~2 + P and ~ + p. Thus if the point 
~ ,  e2, and e3 lies in the yield surface so does the 
point era + p, ~2 + P, aa + P. The yield surface 
must, therefore, be parallel to the [1 11 ] direction 
in principal stress space and can be represented 
by the cross-section normal to this direction. The 
material isotropy implies equivalence of ch, a2 
and ~a; the assumption that the behaviour is the 
same in tension and compression implies 
equivalence of er~ and - c~. These two assump- 
tions taken together imply that the yield surface 
has six fold symmetry about the [1 ! 1 ] direction. 

The cross-section of the yield criterion normal 
to the [ I l l ]  direction therefore consists of 
twelve equivalent parts. The Tresca criterion 
gives a regular hexagon and the yon Mises 
criterion a circle, as shown in fig. 2a. 

We sometimes wish to consider a cross-section 
of the yield surface which lies in the plane of two 
of the principal stresses. This is shown in fig. 2b. 
The Tresca criterion looks a little odd at first 
sight but is easily brought to mind when we 
recall that ~3 is zero. The yon Mises yield 
criterion is an ellipse in this section. 

2. The Mohr Circle Diagram 
A very useful way of representing data for 
combined stress states in the two dimensional 
case is the Mohr  circle diagram [4]. The stresses 
acting on any plane in a material can be resolved 
into a normal stress e acting normal to the plane 
and a shear stress T acting in the plane. 

Mohr  circle diagrams for some simple stress 
states are shown in fig. 3. Pure tension with a 
tensile stress o- 1 is a circle of  diameter o-1, with its 
origin at the point cry/2, O. A rotation of 0 ~ in 

MISES 

SCA 

Figure 2a Cross-sect ion of Tresca and yon Mises yield 
surfaces normal to the [111] direct ion in principal stress 

space. 

VON MISES 

ESCA 

1 

Figure 2b Cross-sect ion of Tresca and von Mises yield 
surfaces in a 1 a 2 plane of principal stress space. 

real space corresponds to a rotation of 20 ~ in the 
Mohr  circle diagram. We can therefore see that 
the tensile stress ~r 1 gives a normal stress el and 
zero shear stress on a plane whose normal is 
parallel to the direction of ~1 (point A), zero 
normal stress and zero shear stress on a plane 
perpendicular to this direction (point B), and a 
shear stress and a normal stress of magnitude 
el/2 on a plane at 45 ~ to this direction (point C). 

A similar circle, passing through the points B, 
D, E represents a compressive stress ~1, this 
circle being centred at the point - ~a/2, O. 

The value of the Molar circle diagram is that 
it shows how the application of one set of stresses 
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Figure 3 Mohr circle diagrams for simple stress states. 

to an isotropic solid is equivalent to a number of 
combined stress s ta tes-  all the points on the 
Mohr circle. It is therefore particularly valuable 
when we come to consider yield criteria, because 
the yield criterion will now be defined from 
experimental data as the envelope of the Mohr 
circles. For  the Tresca yield criterion this envelope 
is simply the tangent lines to a set of circles of 
identical radius with their centres on the normal 
stress axis, i.e. the two parallel dotted lines in 
fig. 3. 

2.3. Results for Isotropic Polymers 

Some of the results obtained for the yield 
behaviour of polymers will now be considered 
in the light of the above discussion. The selection 
of these results is somewhat arbitrary but is 
intended to be representative. 

Fig. 4 shows data for the yield of polystyrene 
under various stress conditions [5]: tension (A), 
compression (B), torsion (C), biaxial tension (D) 
and punch indentation (E). Although there are 
some reservations about the data because the 
specimen had been slightly preoriented it is 
evident that the data do not fit the Tresca or the 
yon Mises yield criteria. This is clearly shown by 
the two representations of the data in principal 
stress space and in the Mohr circle diagrams. 

Somewhat similar results were obtained by 
Bowden and Jukes [6] using the plane strain 
compression technique shown in fig. 5. The 
polymer specimen, in the form of a sheet, is 
simultaneously subjected to a compressive stress 
% and a tensile stress ~2. The virtue of the method 
is that it allows the yield behaviour to be deter- 
mined for a material which is brittle in a simple 
tension test. Bowden and Jukes' data are shown 
in figs. 6 and 7. We must beware of too facile an 
interpretation of fig. 6. In these tests the third 
stress ~a is not measured but it is finite and is 
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Figure 4 (a) Yield locus of polystyrene showing the 
pressure dependence of yielding; (b) Angle which bands 
make the tension and compression axes (after Argon et 
al). 

.•" l IINSTRON RAM 

. INSTRON ~ t ..J J 

Figure 5 The experimental arrangement for plane strain 
compression (after Bowden and dukes), 

given by % = v(a 1 + or2) where v is Poisson's 
ratio. Thus fig. 6 does not show a (001) plane in 
principal stress space. However, fig. 7 clearly 
illustrates that the data do not fit the Tresca yield 
criterion. 
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f igure 6 Measured values of the compress ive yield stress, 
e~ ( true stress) plot ted against  appl ied tens i le  stress, % 
(nomina l  stress).  The ful l  c ircles denote duct i le yield, the 
c rosses bri t t le f racture,  and the combined points tests 
where duct i le y ielding occurred, fo l lowed immediately by 
bri t t le f racture.  The polymer is polymethylmethacry late 
(af ter  Bowden and dukes). 
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t:igure 7 Mohr 's  circle d iagram const ruc ted f rom the data 
in fig. 3. The  angle  ~b is the  ang le  of internal friction equal  
to tan -1 /~ (after Bowden  and dukes) .  

Data of  this type show that the yield behav- 
iour of  polymers is not consistent with either the 
Tresca or the yon Mises yield criterion, and we 
have seen that in principle this can be due to three 
causes 

(1) Lack ofisotropy. 
(2) Dependence on pressure. 
(3) A Bauschinger effect. 

There is, however, also direct evidence for the 
effect of the hydrostatic component of stress on 
the yield behaviour of polymers. The earliest re- 
search on this aspect was undertaken in Russia by 
Ainbinder et al [7] and in Britain by Holliday 
et al [8 ]. Recently there have been more detailed 
studies by three groups, at the Western Reserve 
Case University by Biglione et al [9], Rutgers 
University in USA by Mears et al [10], and at 
Bristol and Leeds University in Britain by 
Rabinowitz et al [11 ]. Fig. 8 shows results for 
polystyrene obtained by Biglione et al. Increas- 
ing the hydrostatic pressure inhibits fracture by 
closing up cracks, and at sufficiently high 
pressures the polymer yields, to be followed by an 
increasing tensile yield stress with increasing 
hydrostatic pressure. Fig. 9 shows the effect of 
pressure on the tensile yield stress of high-density 
polyethylene. These results by Maer et al show a 
three-fold increase in the yield stress for a 
pressure of about 5 kbar. 

Finally, there are shown in fig. 10, the results 
of measurements by Rabinowitz, Ward and 
Parry, of the effect of hydrostatic pressure on the 
shear yield stress of polymethylmethacrylate. The 
shear yield stress more than doubles for a 
pressure of 3 kbar. These results are shown as 
Mohr circle diagrams in fig. 11. The data of  
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Figure 8 Polystyrene:  True st ress versus pressure (af ter  
Big l ione et al). 
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Figure 9. Po l ye thy l ene :  Peak yield stress versus pressure 
(a f te r  Meats  et a l l  

Bowden and Jukes discussed above are shown as 
the crossed points. They are consistent with the 
pressure data, but it is to be noted that they fit 
into a small part of the diagram. This emphasises 
how the use of a hydrostatic component of stress 
enables a much more complete exploration of  
yield behaviour. 
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Figure 10 (a) Shear  stress-strain curves for polymethyl -  
methacrylate  showing fracture envelope.  
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Figure 10 (b) Max imum shear stress ~- as a funct ion o f  
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Figure 11 Mohr -c i r c l es  f o r  yield behaviour  of polymethyl -  
methacrylate.  T h e  c o m m o n  tangent  gives the yield p lane 
a t , ~ 3 O  ~ (af ter  Rabinowitz  et al). 

3. Modified Yield Criteria 
We must now produce a modified yield criterion 
which describes the observed pressure depend- 
ence. Let us first proceed along the lines of 
classical time independent plasticity. 

3.1. The Coulomb Yield Criterion 
An even earlier yield criterion than the Tresca 
maximum shear stress criterion was due to 
Coulomb [12] and originally applied to soils. 
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The Coulomb yield criterion states that the 
critical stress for yielding to occur in any plane 
in the material increases linearly with the 
pressure applied normal to this plane. 

Thus 

where ~e is a critical shear stress called the 
"cohesion" of the material. F is a "coefficient of 
friction" and ~n is the compressive stress on the 
shear plane; F is often written as tan r for 
reasons which will now be made evident. 

Consider uniaxial compression under a com- 
pressive stress ~1 where yield occurs on a plane 
whose normal makes an angle 0 with the direction 
of ~ .  The shear stress ~- -- ~1 sin 0 cos 0, and the 
normal stress Cn = cos 2 0. 

The Coulomb yield criterion -r = re + r tan r 
then becomes 

cr 1 sin 0 cos 0 = re + ~71 tan r cos 2 0 

i.e. yield occurs when 

~h(cos 0 sin 0 - tan r cos 2 0) ~> re .  

In practice this is achieved by yield occurring 
in the plane which maximises the quantity 
(cos 0 sin0 - tan r cos e 0) so that yield occurs 
for the smallest value of the applied compressive 
stress al. 

This maximisation gives tan r tan 20 -- - 1 
o r  

0 = w/4 + r 

The direction of yielding therefore defines the 
angle r where tan r = F, and we reach the very 
interesting conclusion that this yield criterion not 
only defines the stress condition for yielding but 
also the direction in which the material will 
deform, i.e. the yield plane. 

This conclusion is brought out very clearly by 
consideration of the Mohr circle diagrams for a 
typical polymer (see fig. 7). The yield surface is 
two lines each making an angle r with the normal 
stress axis. We will now discuss how this relates 
to measurements of the directions of yielding. 

3.2. Observation of Shear Zones or 
Deformation Bands 

In the compressive measurements of Argon et al 
[5], deformation bands were observed. These are 
shown in fig. 12. The angle between the band 
packets and the direction of compression is 38 ~ a 
result which is clearly consistent in principle with 
the Coulomb yield criterion. 

The shear zones shown in fig. 13 from the plane 
strain compression results of Bowden and Jukes 

Figure 12 Two deformation band packets radiating out of a 
notch in a compression specimen of polystyrene (after 
Argon et al). 

[6] on polymethylrnethacrylate showed a similar 
directionality. Again this result is to be expected 
on the basis of a Coulomb yield criterion. How- 
ever, as remarked by Bowden and Jukes, there are 
problems in obtaining an exact fit to the data, 
partly due to the uncertainty of corrections for 
elastic strains during deformation and partly 
due to lack of confidence in the Coulomb yield 
criterion as being capable of dealing witb the 
situation completely. 

3.3. A Modified yon Mises Yield Criterion 
The Coulomb yield criterion was introduced to 
explain the yield behaviour of soils, and it is 
intuitively reasonable to imagine that the 
normal stress on the yield plane plays a part in the 
shear process of yield in such a material. 

For  a yielding polymer our intuitive analogy is 
with the flow of a viscous liquid, where again the 
shear stress is the critical quantity, bu t  if the 
liquid is compressible we would imagine that the 
hydrostatic component of stress will also be 
important. 

The results for the pressure dependence of the 
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Figure 13 Shear zones obtained in plane strain compression (after Bowden and dukes). 

shear yield behaviour of polymethylmethacrylate 
[11 ] (fig. 10) show a very good linear dependence 
of yield stress on hydrostatic pressure. To a good 
approximation we have 

~ ' = z 0 + a  p 

where -r = shear yield stress at pressure p, 
~'o = yield stress at atmospheric pressure and a 
is the coefficient of increase of yield stress with 
hydrostatic pressure. 

We will see that this simple form of a pressure 
dependent yield criterion is most satisfactory 
when we come to attempt a general rate theory 
for yield in polymers which includes the effect 
of pressure dependence. 

Somewhat more sophisticated proposals have 
been made by Maers et al [10] and by Sternstein 
[13]. Maers et al [10] have considered a yield 
criterion originally proposed by Hu and Pae [14] 
to describe the effects of very high pressure on 
the yield of metals. The second deviatoric stress 
invariant G '  is considered to be a function of the 
first stress invariant i.e. the hydrostatic pressure. 
We have 

J2' = K 2  + c~J1 + /3712 
where 

']1  = ~ + (r2 -]- Cr3 

and 

j #  = ~,[(0"~ - p ) ~  + (0"~ - p ) ~  + ( ~  -p)21 
For their experiments of simple tensile stress 
under a hydrostatic pressure J1 = 0- - 3p 
and 

The yield criterion becomes 

�89 = K ~ + a ( 0 -  - 3 p )  + /9(0- - 3p) 2 

1 4 0 4  

which gives 

3(a - 6#.0) F{ 3k2 
- 2(I - 5N#) + L \ I  - 3#/+ 

9(a 2 - 4a/9 + 12tip2)] § 
j 

The experimental data can be fitted to this 
equation by a suitable choice of K, a and /9. 
Sternstein's criterion [13] is somewhat simpler. A 
three-dimensional analogue of the Coulomb 
criterion is proposed. 

~r oct = "re - -  /X~m 

where ~'oet is the octohedral shear stress at a 
pressure p, ~r~ = I1/3, where/1 is the first stress 
invariant, and % is the octohedral shear stress at 
zero pressure. Fig. 14 shows data obtained by 
Sternstein and Ongchin [13] for polymethyl- 
methacrylate. There is a good fit to the data, 
although the range of the pressure term is rather 
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OL y---J 
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O-lS oL2 o.~s 

M E A N  N O R M A L  STRESS (kb~ar) 

Figure 14 Octahedral shear stress as a funct ion of mean 
normal stress (after Sternstein and Ongchin).  
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small compared with that obtained from measure- 
ments of tensile or shear yield under a hydrostatic 
pressure. 

Bauwens [15] has proposed a relationship 
similar to that of Sternstein and Ongchin based 
on tension and torsion tests on hollow cylindrical 
specimens of polyvinylchloride. The experi- 
mental arrangement is shown in fig. 15. The 
torsion apparatus was incorporated in an Instron 
tensometer. 

~ - - -  LOAD CELL 

i i ~  NT 

~ w ~  EAD 

Figure 15 Apparatus for combined tension and torsion 
t e s t s  (after Bauwens). 

The tensile elongation was applied at a con- 
stant rate parallel to the axis of the specimen, 
and the shear stress applied by hanging weights 
over the pulleys. Care was taken to reduce the 
final data to identical strain rates in tension and 
torsion. 

The yield criterion was assumed to take the 
form 

roe~ + Ap = f (~ ,  T) (3.1) 
where A is a constant. 

With this assumption it can be shown that the 
yield stresses in the tension-torsion experiment 
can be fitted to an ellipse, which differs from the 
von Mises ellipse. Fig. 16 shows a comparison of 
the experimental data with the fit to an ellipse on 
the basis of (3.1). There is a good fit, but a major 
weakness of this representation of yield be- 
haviour is that it implies that the relationship 
between the tensile and compressive yield stresses 
Gt and Ge respectively, is given by 

crt ~j2 - A 

ere ~/2 + A 

I I I i i l 

L . . . . . . .  --------%oo---._ Fz L Lol~S~oC~rfgL A~P I:' 

I ........... 
_ VO.M,SESE'_L,  ET" 

0 L I I I ' c~ 
0.1 0-2 0.3 0,4 0.5 

~ (kbar) 

Figure 16 Plot of r versus cr at the yield limit for tension- 
torsion tests. Experimental data are compared to the 
ellips~ corresponding to equation (3.1) and to the von 
Mises ellipse rafter Bauwens). 

i.e. that it is independent of the strain rate and 
temperature. As will be discussed below, this is 
not generally true. 

4. The  Viscoelastic Nature of Yield 
Behaviour  

The yield behaviour of polymers is very depend- 
ent on temperature and the rate of testing. A 
comprehensive treatment must therefore con- 
sider these features as well as deal with the 
situation of combined stresses, which we have 
embodied in the yield criterion. The best situa- 
tion would be that a molecular theory of yield 
would quite naturally incorporate all these 
features, and we will eventually discuss pre3ent 
progress along these lines. 

Many of the investigations into the visco- 
elastic nature of yield behaviour have chosen as 
their starting point the Eyring viscosity equation. 
This approach has been taken by Roetling [16], 
Haward and Thackray [17], Bauwens [18], Holt  
[19] and in his earlier work by Robertson [20]. 

In the high stress region where yield occurs the 
Eyring theory gives the relationship between 
strain rate 6 and applied stress cr 

( , J u  - 

as 6 = A exp kT  (4.1) 

where A is a constant, v is the activation volume, 
k is Boltzmann's constant and T is the absolute 
temperature. A U is the activation energy for the 
flow process. 

The argument is then that at the yield point the 
time rate of change of stress is zero, although the 
strain rate is constant. It is also argued that up to 
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the yield point the stress and strain rate are 
uniform over the specimen. Bypassing a slight 
uncertainty about the distinction between condi- 
tions at the yield point and immediately prior 
to it we can then regard equation (4.1) as 
defining the relationship between the yield stress 
and strain rate. 

A simple rearrangement of equation (4.1) gives 
the yield stress ~ry in terms of the strain rate at 
yield 6 as: 

This suggests that plots of ~ry/T against log 
(strain rate) for a series of temperatures should 
give a series of parallel straight lines. Fig. 17 
shows a set of results for the tensile yield stress of 
polycarbonate by Bauwens et al [18] together 
with calculated lines based on this equation with 
constant values of v and A U. The fit is very 
satisfactory, confirming that the Eyring equation 
gives a good start to describing the yield 
behaviour. 
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~ ~ 1 4 0 ~  
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- 6  - 5  - 4  - 3  - 2  -1 
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Figure 17 Measured ratio of yield stress to temperature as a 
function of logarithm of strain rate (E in sec -1) for poly- 
carbonate. The set of parallel straight lines is calculated 
from the Eyring equation (after Bauwens el al). 

Haward and Thackray [17] have discussed the 
possible interpretation of the Eyring activation 
volume obtained by such procedures, and have 
considered that the most relevant comparison is 
with the size of the statistical random link in the 
polymer chain in dilute solution. We can then 
obtain some idea of the volume of the polymer 
chain which moves in the yield process. 

Table I contains comparative figures for a 
number of polymers and is taken from Haward 
and Thackray's paper. It can be seen that the 
activation volume varies from about two to ten 
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TABLE I A  comparison of the statistical segment 
volume for a polymer measured in solution 
with the flow volumes derived from the Eyring 
Theory (after Haward and Thackray). 

Polymer Volume of Eyring flow 
statistical link volume 
in soln V 
(A 3) (A 3) 

polyvinylchloride 380 8 600 23 o C 
5000 49~ 

12000 

polycarbonate 482 6440 25 ~ C 
6240 0~ 
4 300 

polymethylmethacrylate 910 4660, 3900 
3100 
4100 

polystyrene 1220 9 600 
2700 

cellulose acetate 2 060 8 800 
20300 

cellulose trinitrate 2 620 6 070 23 ~ C 
6000 54~ 

cellulose acetate 2 060 17400 20 ~ C 
28 000 33 ~ C 

times that of the statistical random link. This 
result is very much in accordance with 
expectation, as it appears very reasonable to 
suppose that yield involves the cooperative 
movement of a larger number of chain segments 
than would be required for a molecular confor- 
mational change in dilute solution. 

So far the question of pressure dependence of 
yield behaviour has been ignored. We will now 
consider data for polyethylene terephthalate [11 ]. 
The particular specimens were crystalline and 
isotropic (Arnite A150, BIP Chemicals Ltd). 
The next two figures show the relevant data. In 
fig. 18 there are results obtained by Dr R. A. 
Duckett [21] for tensile and compressive yield 
stresses at 20 and 50~ over three decades of 
strain rate. The compressive yield stresses were 
measured as the intersection of two tangents on 
the stress straincurve. It can be seen that over this 
comparatively small range of strain rates, both 
the tensile and compressive yield stresses, 
although different in magnitude, are linearly 
related to the logarithm of the strain rate. The 
compressive yield stresses are approximately 
1.10 ~: 0.03 times the tensile yield stresses over 
the strain rate range, but there is a tendency for 
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Figure 18 The tensile and compressive yield stress of 
isotropic polyethylene terephthalate versus log10 (Strain- 
rate) at 20 and 50~ (Data obtained by Dr R. A. Duckett). 

the compressive yield stresses to be the more rate 
dependent. 

Fig. 19 shows results obtained by Rabinowitz 
et al [11 ] for the effect of hydrostatic pressure on 
the shear yield stress of the same material. These 
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Figure 19 Maximum shear stress as a function of pressure 
for polyethylene terephthalate. Q, as received; [~, 
annealed; Q, yield; •  fracture (after Rabinowitz et al). 

results are similar to these obtained for poly- 
methylmethacrylate discussed in Section 2.3 
above. 

As we have seen one of the simplest ways of 
representing this shear yield stress data is to 
write 

~" = ~'0 + c~p 

The data for crystalline isotropic PET give 

c~ = 0.075. 

This suggests that the Eyring equation may be 
very simply modified to include the effect of the 
hydrostatic component of stress. 

~ = A e x p -  ( A U -  Tv + (4.3) 

where r is the shear yield stress, p is the hydro- 
static component of stress and X2 is the "pressure 
activation volume". 

In this very simple modification we see that (;) o 

~.T I~ 

gives the quantity measured in the shear yield 
stress experiments by Rabinowitz et al. 

For the tension and compression experiments, 
the shear and hydrostatic components of stress 
are given in terms of the observed yield stress 
by 

o" (7 
~ - = ~ ,  p = - - ~  

and 
(r (7 

~-= ~ ,  p = + ~,respectively.  

We can therefore write an apparent activation 
volume for the tensile and compressive yield 
behaviour as 

u ~2 
(vapv) tension = ~ + -~ 

v ~2 
(vapv) compression = 2 3 

The tensile and compressive yield data shown 
in fig. 19 give a value for ff2/v of 0.13 i 0.035. 
From such simple starting considerations, this 
value is sufficiently close to the directly measured 
value of 0.075 to suggest that the approach is a 
sensible one, although a more sophisticated 
representation may be required. 

Having introduced the subject of the visco- 
elastic nature of the yield behaviour by discussing 
the use of the Eyring equation it is now desirable 
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to redress the balance somewhat by ~ '*~ 
shortcomings. The Eyring equation impllc~ . 

o-We/  
should be independent of temperature. This is 
not generally true, although it was shown by 
Bauwens to hold for polycarbonate as we saw 
above. In many cases (~cry/~ 1 n d)m is approximately 
independent of temperature, and in fig. 20 we see 
some data for the compressional yield behaviour 
of  polymethylmethacrylate [19] in which 
(O~y/~ln ~)~, decreases with increasing tempera- 
ture which implies that the activation volume 
should increase with increasing temperature. 

"-C 

~2 
cl j O ~  Q*~ 22~ 50 ~ 

j q b /  j v ~  _! 

..~.-----~ q ~  ~ D - -  115~ 
(~  - I 1 " - ~  I I 1 I I I I 

40 -5 10 -4 t0 -3 102 10 .1 "f 10 102 103 
STRAIN RATE (ser -1) 

Figure 20 Yield stress versus strain rate for polymethyl -  
methacrylate in compression at 0, 22, 50, 82, and 115~ 
(after Holt) ,  

Furthermore, careful examination of the 
variation of yield stress with strain rate over a 
wide range of strain rates suggests that in some 
cases (e.g. polyethylene terephthalate in tension, 
polymethylmethacrylate in compression) there is 
distinct curvature on the plots of yield stress 
against the logarithm of the strain rate. 

For these reasons, together with the desir- 
ability of obtaining a more satisfactory molecular 
theory of yield than is offered by the Eyring 
equation, we will consider in detail more 
involved theories of yield behaviour. 

4.1. The Robertson Theory of Yield 
Robertson [22] has developed a molecular theory 
of  yield behaviour which can be regarded as a 
slightly more elaborate version of the Eyring 
viscosity theory. It has the merit of attempting to 
incorporate structural ideas, rather than leaving 
the discussion at a purely phenomenological 
level. 

For simplicity it is assumed that the polymer 
chain contains only two local stable conforma- 
tional states. These are the extended chain trans 
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low energy state, and the cis high energy state, 
which Robertson terms the flexed state. It is 
proposed that in equilibrium the fraction in each 
state is given by the Boltzmarm distribution, 
governed by the free energy difference A U1 
between the two equilibrium states. 

The glassy polymer is considered as being 
quenched in the state it occupied at the glass 
transition temperature Tg. Thus prior to the 
application of stress the fraction of elements in 
the high energy state is 

r  

A gd 
i = exp ~-- X ~-~gj (4.4) 

where 0~ = Tg if the test temperature T < Tg 
a n d 0 g =  T i f T > T g .  

In the isotropic polymer there is no preferred 
orientation of the structural elements which take 
part in the yield process whether these are 
segments of the polymer chain or small aggre- 
gates of segments of chains. 

Consider a structural element whose relevant 
direction makes an angle 0 with the direction of 
the applied shear stress. A shear stress r is 
considered to change the energy difference 
between the two conformational states from 
A U1 to (A U1 - ~-v cos 0). v is again the activation 
volume, and zv cos 0 represents the work done 
by the shear stress in the transition between the 
two states. The application of the shear stress 
tends to increase the fraction of elements in the 
upper energy state for elements in some orienta- 
tions, and decrease it for other orientations, the 
fraction of elements in the upper state, with 
orientation 0 being 
x (o) = 

exp { -  (A U1 - ~-v cos O)/kT} 
[1 + e x p { -  (AUx- rvcos  0)/kr}l  (4.5) 

Clearly the fraction of flexed elements 
increases on application of a shear stress �9 for 
orientations such that 

A U1 --  Tv c o s  0 A U1 

kT <~ kOg (4.6) 

For one part of the distribution of structural 
elements, applying the stress tends to make for 
an equilibrium situation where there are more 
flexed bonds and this can be regarded as 
corresponding to a rise in temperature. For the 
other part of the distribution, the effect of stress 
can be regarded as tending to lower the tempera- 
ture. Robertson now argues that the rate at which 
conformational changes occur is very dependent 
on temperature (similar to the viscoelastic 
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behaviour at low strains described by the WLF 
equation). It is assumed that the rate of approach 
to equilibrium is so much faster for those 
elements which flex under the applied stress and 
hence tend to a higher equilibrium temperature, 
that changes in the others can be ignored in 
calculating the maximum bond fraction which 
can occur under a given applied stress. 

The maximum fraction of elements in the 
upper flexed state averaged over all orientations 
can be shown to be 

kT 
Xmax = -f-vr{In( l + e x p { - ( A U l - ~ v ) / k T } ~ i  ~-~--~-xp ~-_- ~]~l/-~g ] 

,Jr1  vl) 
+ -k-T + kV ~ ]  (4.7) 

e x p ( -  AU1/kOg) \ 
1 ~ ~xp (--- ~ g ) j  

With this fraction of elements in the upper 
state the polymer is structurally equivalent to 
that of the melt at a temperature 01 where 

exp ( -  dUt/kO 0 
Xma~ = (1 + exp - A U1/k01) (4.8) 

The strain rate d corresponding to the tempera- 
ture 0~ is then calculated from the WLF equation, 
and can be shown to be 

d =  

7" CIC2 C2 IO~-/Jt ~g exp - f2"303[  (0, -- Tg ~ C 1 ] t  

(4.9) 
where C~, C~ are the "universal" WLF para- 
meters and ~?g is the universal viscosity of a 
glass at Tg. 

T A B L E  II Table of coefficients for yield in polymethyl- 
methacrylate (after Robertson). 

cl 17.44 ~ C 

c~ 5 1 . 6 ~  

A Ua 1.44 k c a l s / m o l e  

T~ 105 ~ c 
7]g 10 ~a - 10 ~4'~ po i s e  
v 1 4 0 A  3 

Table II shows the results obtained by 
Robertson for a best fit to data for the yield 
behaviour of polymethylmethacrylate. It is 
extremely encouraging to find that physically 
reasonable values can be given to the quantities 
�9 /g, v and A U1. 

Duckett, Rabinowitz and Ward [23] have 
modified the Robertson model to include the 

effect of the hydrostatic component of stress p. It 
was proposed that p also does work during the 
activation event and that the energy difference 
between the two states should therefore be 
modified to 

A U1 - zv cos 0 + p3"2 

where O is a constant with the dimensions of 
volume. 

Thus when p is positive (as in a compression 
test) the effective barrier height is increased and 
when p is negative (as in a tension test) the 
effective barrier height is reduced. 

The argument then follows that of Robertson 
exactly and the maximum fraction of elements in 
the upper state averaged over all orientations is 
modified to 

kT X max = 

{ ln ( 1 + exp{-  (AUI - rv + -~ e-~-(-- -A-Ul~ff-~g) ] 

(v, pO (4.10) 
+ k--r + + k r  

exp ( -  AU1/kOg) ) 
1 + exp ( -  A U1/kOg)f 

In addition to the parameters C1, C~, A/21, Tg, 
~/g and vrequired by the original Robertson treat- 
ment, this modified theory includes the para- 
meter [2. An approximate relationship between 

and v can be obtained from the data of 
Rabinowitz, Ward and Parry on the effect of 
hydrostatic pressure on the shear yield behaviour 
of polymethylmethacrylate. These data show 
that the shear yield stress at constant strain rate 
is an approximately linear increasing function of 
hydrostatic pressure. Reference to equation (4.9) 
shows that over the range of shear stresses 
observed by Rabinowitz et al [11] at constant 
strain rate, 01 must be approximately independ- 
ent of pressure. Examination of equation (4.10) 
indicates that if rv - p$2 = constant then 01 is 
approximately independent of pressure. It was 
therefore concluded that to a good approxima- 
tion 

v d 0.204, 

as observed by Rabinowitz et al. 
Data for tensile and compressive yield stresses 

of polymethylmethacrylate at various strain 
rates and temperatures were analysed according 
to this modified Robertson treatment. For the 
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tensile and compressive tests ~- and p were taken 
to be e/2 and zE ~/3 respectively, where ~ is the 
observed axial yield stress, d was assumed to be 
equal to one half the applied axial strain rate. 
The maximum shear stress on the specimen and 
the applied hydrostatic pressure were used for ~" 
and p in the torsion tests. The best fits to the data 
are shown in figs. 21, 22, and the final values for 
the parameters used toogenerate these fits are 
shown in Table III. 
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Figure 21 Yield st ress of  polymethylmethacry late versus 
Iog~0 (strain rate) (af ter Ducket t  eta/). 

T A B  LE III  Tab le  of  coef f ic ients for  yield in polymethyl -  
methacry late inc luding effect of  hydrostat ic  
pressure (after Duckett ,  Rabinowitz,  and 
Ward) .  

C~ l l . I ~  
c~ 55.9oc 
A O-1 0.88 kcal/mole 
Tg 105 o C 
~g 1012 poise 
v 109/~ n 
g2/v 0.175 

Although the curve fitting is not perfect, it is 
sufficiently good to permit three tentative 
conclusions 
(1) The difference between the tensile and com- 
pressive yield stresses can be attributed to the 
effect of the hydrostatic component of stress. 
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(2) The general features of the rate dependence of 
yield stress may be represented in terms of  an 
effective viscosity which is pressure, temperature 
and shear stress dependent. 
(3) The yield behaviour relates to the low strain 
viscoelastic relaxation behaviour, through the 
WLF equation or perhaps more exactly by some 
modification of the WLF equation. 

It is at this stage that we see the continuity 
between yield behaviour and low strain visco- 
elastic behaviour. A general conclusion is that 
further advances in our understanding may well 
be achieved by a reappraisal of non-linear 
viscoelastic behaviour from the view point of 
yield phenomena. 

5. The Yield Behaviour of Oriented 
Polymers 

5.1. Simple Yield Criteria for Anisotropic 
Materials 

(1) The critical resolved shear stress law of  
Schmid 
The simplest yield criterion for anisotropic 
materials is the critical resolved shear stress law 
of Schmid [24], which has had wide application 
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to the yield behaviour of simple crystals of metals 
and ceramics. This law states that yield occurs 
when the resolved shear stress in the slip direction 
in the slip plane reaches a critical value. For a 
tensile stress ~ making angles a and/3 with the 
slip direction and the normal to the slip plane 
respectively this gives the critical resolved shear 
s t r e s s  "re a s  

"re ~ o" c o s  cL c o s / 3  

(2) Hill's extension o f  the van Mises yield criterion 
Hill [25] has proposed that the van Mises yield 
criterion can be extended to anisotropic materials 
which possess three mutually orthogonal planes 
of symmetry at every point, i.e. materials whose 
intrinsic symmetry is at least orthorhombic. 

The intersections of the three orthogonal 
planes define the principal axes of symmetry, and 
these directions are chosen as Cartesian axes of 
reference. The yield criterion then takes the 
form 

F ( o y y  - ~,,z) 2 + a ( ~ , z  - ~xx) ~ + H(~,xx - ~ ) ~  
+ 2Lcryz 2 + 2Mazx ~ + 2Naxy ~ = 1 

where F, G, H, L, M and N are parameters 
which characterise the anisotropy of the yield 
behaviour. 

This yield criterion satisfies two of the basic 
requirements of the known yield behaviour of 
isotropic metals. 
(1) The yield criterion is independent of the 
hydrostatic component of stress, i.e. the normal 
stress terms appear as differences. 
(2) There is no Bauschinger effect, i.e. it contains 
only even power terms in the stress components. 

In addition this yield criterion reduces to the 
van Mises yield criterion for vanishingly small 
anisotropy. 

5.2. The Stress-Strain Relations for 
Anisotropic Materials 

The Schmid critical resolved shear stress law 
implicitly defines the direction of the strain 
increments, because it supposes that only a shear 
process is occurring. In metals a slip band is 
observed and the deformation consists of a 
simple shear in the band direction. 

For his extension of the van Mises yield 
criterion Hill proposed plastic strain increment 
relations which are analogous to the Lrvy-Mises 
equations [26, 3] for an isotropic plastic 
material. Referring the strain increments to the 
principal axes of anisotropy. 

dexx = d a [ H ( ~ x x  - ~ )  + a ( , , : x  - ~ ,z)J  

deyz = d~Layz 
deyy = d;~[F(~yy - ~z,) + H(~,rj- Gxx)] 

dezx = dAMazx 
dezz = da[a(~rzz - ~rxx) + F(azz - crv~)] 

dexy = dhNcrxy (5.1) 

It is particularly important to note that in this 
case (unlike the case for isotropic materials) the 
principal axes of the plastic strain increments 
only coincide with the axes of anisotropy when 
the principal axes of stress coincide with the 
latter. 

5.3. Experimental Studies of the Yield 
Behaviour of Oriented Polymers 

In isotropic polymers the onset of yield is often 
accompanied in tensile tests by the formation of 
shear zones or deformation bands. I f  an oriented 
polymer is subjected to a tensile test in which the 
axis of the applied tension is not parallel to the 
initial draw direction (IDD), the deformation is 
sometimes concentrated in a very striking manner 
into a narrow deformation band. The deform- 
ation bands which form are of two types. One 
type is nearly parallel to the initial draw direc- 
tion and has the appearance of a slip band in 
metals; the other is more diffuse, makes a larger 
angle with the draw direction and has the 
general appearance of a kink band in metals. 
In the last few years, there has been consider- 
able investigation of these deformation bands 
in polymers, both with a view to understanding 
yield behaviour and with regard to the mole- 
cular reorientation processes which take place. 

(1) Kink Bands in Nylon 
One of the earliest studies of deformation bands 
in oriented polymers was made by Zaukelies [27], 
who investigated the formation of kink bands in 
oriented bristles of nylon 6:6 and nylon 6:10 
when the bristles were compressed along their 
axis in a tensometer. 

Electron micrographs of the cleavage surface 
of bristles containing the kink bands suggested 
that there was gross reorientation of the material 
in the kink bands in a similar manner to that 
occurring in crystalline materials. Zaukelies 
therefore sought to explain his results in terms of 
Orowan's equation [28] which relates the 
direction of a kink band in a single crystal to the 
parameters of the crystal lattice. It was proposed 
that the slip plane was the (010) plane, and that a 
number of planes acted in unison as a single 
lamella. 
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The direction of the kink bands changed with 
temperature and controlled experiments at 25 
and 100~ suggested that at the lower tempera- 
ture two (010) planes form a lamella for slip, 
whereas at the higher temperature three planes 
act together. Zaukelies also proposed various 
dislocation motions as explanations for the slip 
processes. These early results are of considerable 
interest and suggest that a more extensive 
investigation would prove rewarding, particularly 
as recent studies of deformation bands in other 
polymers have cast some doubts on the validity 
of interpreting these phenomena in terms of the 
plasticity of crystalline materials. 

(2) Deformation Bands in Polyethylene 
In oriented high density polyethylene sheets, a 
very clear deformation band can be observed 
when the sheet is subsequently extended in a 
direction which is oblique to the initial draw 
direction. A striking example of this is shown in 
fig. 23 from the investigation of Keller and Rider 
[29]. The deformation band shows a remarkable 
resemblance to slip bands in metals. 

angle X-ray diffraction measurements were used 
to show that gross molecular reorientation 
occurred in the kink bands, as in the case of 
nylon. 

Keller and Rider [29] have made a detailed 
examination of deformation bands in a variety of 
drawn; drawn and rolled; and drawn, rolled and 
annealed sheets of high density polyethylene. It 
was found that the band boundary was generally 
not parallel to the c-axis direction, and that the 
boundary of the kink bands did not bisect the 
angle between the c-axis direction on either side 
of the boundary. Nevertheless, the principal 
factor in determining the deformation behaviour 
appeared to be alignment of the c-axis and it was 
concluded that the yield behaviour approximated 
to slip in the direction of the c-axis. 

Keller and Rider measured the yield stress as a 
function of the angle 0 between the tensile 
testing direction and the IDD. They proposed 
that the data can be fitted by the Coulomb yield 
criterion and a typical set of results, shown in 
fig. 24, confirm that a reasonable fit can be 
obtained. As we have seen, the Coulomb yield 
criterion also defines the plane in which yield will 
occur. In this respect it did not satisfactorily 
describe the data, as the deformation band did 
not form in the required direction. 

(3) Deformation Bands in Polyethylene Tereph- 
thalate 

In oriented polyethylene terephthalate sheets, 

Figure 23 A deformat ion band in a drawn and annealed 
sheet of high density polyethylene (after Rider and Keller). 

From their studies in polyethylene, Kurakawa 
and Ban [30] concluded that in some cases, when 
there was only a small angle between the initial 
draw direction and the tensile axis in the redraw- 
ing, the band direction was in the c-axis direction 
(i.e. the (001) direction in the crystalline regions 
of the polymer) and coincided with the c-axis 
direction in the band. In other cases, the 
deformation band was noted to be a little inclined 
to the (001) direction. They therefore suggested, 
but without definitive proof, that the basic 
deformation was not simple slip in the (001) 
direction, but a combination of (001) slip and 
mechanical twinning. 

When the tensile axis made a large angle with 
the IDD, kink bands were observed, and wide 
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very distinct deformation bands are observed 
[31-33] and it is very evident that their directions 
do not in general coincide with the initial draw 
direction. It  has also been shown that the varia- 
tion in yield stress with the direction of the 
applied tensile stress, cannot be fitted either to 
the critical resolved shear stress criterion or to 
the Coulomb yield criterion. However, as shown 
in fig. 25, a good fit was obtained to the Hill 
anisotropic yield criterion. 

I 
3.s~- 

3-C 

o 2.5 
r 
Z 
W 
I-- 

..A 
O,. 

~2.0 
r..o 

u3 

o f.5 
._1 

>- 

I 

1'O i 

O 

§ 

10 20 30 40 50 60 70 80 90 
6=ANGLE BETWEEN IDD AND TENSILE AXIS 

Pigure 25 Graph of tensile yield stress versus direction of 
applied tensile stress for oriented polyethylene tereph- 
thalate sheet, showing best fit obtained to the Hill aniso- 
tropic yield criterion (after Brown et a l l  

For the plane stress tensile tests on thin sheets, 
the Hill yield criterion (assuming sheets of  
orthorhombic symmetry) reduces to 

~ {(G + H)cos40 + (H  + F)sin40 
+ 2(N - H)  sin20 cos20} = 1 

where 0 is the angle between the I D D  and the 
applied tensile stress or. 

In fig. 25, the excellent fit was obtained by 
choosing the constants to give an exact fit to the 
data at 0, 45 and 90 ~ It  was also found that 
Hill's equations for the plastic strain increments 

(Equations 5.1 above) gave a reasonably 
accurate prediction of the observed band 
directions. 

We will choose a rectangular set of axes 0x, 
0y, 0z with 0x parallel to the IDD,  and 0y in the 
plane of the sheet. For  the tensile tests on thin 
sheets the stress in a direction normal to the 
sheet is zero i.e. ~zz = 0 and the Hill equations 
reduce to 

dexx = dA[(G + H)crxx - Hcryy] 
deyy = dA[(H + F)crxy - Hcrxx] 
dezz = - dA[G~xx + F~yy] 

and 

dexy = dA Ncrxy.  

The deformation band direction is the direction 
of material which is common t o  both the 
deformed and the undeformed material. I t  
therefore defines a direction which is neither 
rotated nor distorted by the plastic deformation. 
This means that the plastic strain increment must 
be zero in the band direction. There are two such 
directions in the material, one of which defines the 
direction of the slip deformation bands and the 
other the kink bands. 

To find the directions where the plastic strain 
increment is zero, it is convenient to define a new 
system of co-ordinate axes in which one of the 
plastic strain increments is zero. 

We therefore consider a set of  co-ordinate axes 
0x', 0y', 0z' rotated about 0z from 0x, 0y, 0z 
through an angle fl i.e. x0x' = y0y' = ft. 

In the new frame of reference the plastic strain 
increments are 

dexx' = dexx cosUfl + deyy sin=fi 
+ 2dexr sin fi cos fl 

deyy' = dex~ sin2fi + devy cos~fl 
+ 2dexy sin fl cos fl 

dezz' = dez~ 
dexy' = - (dexx - deyy) sin fl cos fi 

+ dexy(COS2fl - sin~fi) 

The condition for the deformation band occur- 
ring at an angle /3 to the I D D  is chosen to be 
dexx' = 0 which gives after dividing by sin2fi 

defy  tan2fl + 2dexy tan/3 + dexx = 0 

substituting for der~, dexy, dexx f rom the HilI 
plastic strain increment equations, and putting 
~xx = ~ cos ~0, ~yy = sin ~0, C~xy = ~ sin 0 cos O, 
we obtain a quadratic equation in tan/?. Thus for 
each value of 0 there are two predicted deforma- 
tion band directions. 

1413 



I .  M .  W A R D  

f4 

1: 

1C 
? 
o~ 

~ 6  

4 

2 

0 

-2 

t I 
/ 

! 

11 o 

i I 
o ~  

/ 
/ o  

o / e 

o ~oOo 
/ 

o , /  o 

o / ' ~  go 
r ~  

/ 
/ 

lOo  ao 20 Sb go 70 
o / 0 tue~rees/ 
o /  
/o 

/o 

dO ~'- 

Figure 26 Graph showing deviation of deformation band 
direction from the initial draw direction/3 as a function of 
the angle 8 between the applied tensile stress and the 
initial draw direction (after Brown et aL). 

ene and polypropylene [35]. The results for 
polyethylene shown in fig. 27 are the clearest, 
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Figure 27 Graph of yield stress in simple shear against ~, 
angle between the direction of the applied shear stress 
and the initial draw direction, for drawn high-density 
polyethylene (after Robertson and doynson). 

Fig. 26 shows the good fit obtained for the slip 
deformation band angle in polyethylene tereph- 
thalate using the values for F, G, H and N 
obtained from the yield stress data. It is evident 
that the Hill analysis provides a good description 
of the plastic deformation behaviour. 

(4) Simple Shear-stress Yield Tests 
A valuable extension to the tensile tests on 
oriented sheets is provided by a series of simple 
shear tests undertaken under rather different 
experimental conditions by Robertson and 
Joynson [34, 35], Bridle, Buckley, and Scanlan 
[33] and by Brown, Duckett, and Ward [32]. It 
should perhaps be emphasised at the outset that 
it is very difficult to achieve the experimental 
conditions of simple shear and that in all these 
experiments the numerical values of the yield 
stresses obtained should probably be treated with 
caution. 

In Robertson and Joynson's experiments [34] 
the specimen is 2.5 to 5 mm in length and the 
shear displacement takes place over a distance of 
only 0.075 mm. The shear stress was measured at 
an arbitrary total extension so that the results are 
merely akin to an engineering proof stress. 
Results were obtained in the first series of experi- 
ments for polycarbonate and potyphenylene 
oxide [34], and later for high density polyethyl- 
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although those for the other polymers are similar 
in form. The shear yield stress varies in an 
approximately sinusoidal fashion with the angle 
between the direction of the applied shear stress 
and the IDD. The two shear stress maxima are 
however very different in magnitude, which 
Robertson and Joynson attributed to the 
following reason: In one case, the shear stress 
acts to stretch the oriented fibrils of the specimen 
still further. The high shear stress observed is 
then believed to be due to the inhibition of slip 
by tie molecules. In the other case the shear 
stress acts to compress the fibrils, which are then 
believed to deform by kinking, which would very 
likely be an easier mode of deformation. 

In the experiments o f  Brown, Duckett, and 
Ward [32], sheet specimens of oriented poly- 
ethylene terephthalate were subjected to simple 
shear in a simple jig coupled to a tensometer by 
universal joints [36]. In this case the stress-strain 
curves were determined, subject to the reserva- 
tions mentioned above concerning the test 
method, and a typical set of these are shown in 
fig. 28. These stress-strain curves vary markedly 
in form as the angle ~ between the shear dis- 
placement direction and the IDD changes. It is 
particularly noticeable that there is a clear yield 
drop for ~ = 45 ~ but no yield drop for~  = 135 ~ 

The qualitative explanation of these results 
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Figure 28 Typical stress-strain curves in simple shear for oriented polyethylene terephtha[ate. r is angle between 
direct ion of shear yield stress and the initial draw direct ion (after Brown et al). 

given by Brown, Duckett, and Ward is some- 
what similar to that suggested above by Robert- 
son and Joynson, although it does not depend 
on morphological features to the same extent. 
The applied shear stress can be resolved into a 
compressive stress and a tensile stress at right 
angles. When r = 45 ~ the IDD is parallel to the 
compressive component of stress, whereas when 
r = 135 ~ the IDD is parallel to the tensile 
component of stress. We would intuitively expect 
that it is easier to compress an already extended 
structure than to extend it further. For this 
reason, it is reasonable to find that the shear 
yield stress for r = 45 ~ is less than that for 
r = 135 ~ . The result does imply that the 
compressive yield stress of oriented polyethylene 
terephthalate is less than the tensile yield stress. 
Brown, Duckett, arid Ward tested this hypothesis 
by comparing in a subsidiary experiment the 
tensile and compressive yield stresses of oriented 
PET rods. Although this material was not so 
highly oriented as the sheet it was indeed found 
that the tensile yield stress was markedly greater 
than the compressive yield stress. This is in 
contradiction to the results for isotropic PET, 
where the influence of the hydrostatic component 
of  stress makes the tensile yield less than the 
compressive yield stress. Brown, Duckett, and 
Ward attributed this anisotropy in the yield 
behaviour of the oriented sheet to a Bauschinger 
effect, analogous to that observed in cold worked 
metals. 

(5) Formal Introduction of the Bauschinger 
Effect into the Yield Criterion 
A simple method of  representing the observed 

behaviour is to modify the Hill anisotropic yield 
criterion by the introduction of a term ai, which 
represents the difference between the tensile and 
compressive yield stresses in a direction parallel 
to the IDD. Choosing the x direction as the IDD 
as before, the yield criterion becomes 

+ H(axx - ~i - cr~) ~ + 2L~rrz ~ + 2M~zx ~ 
+ 2N~xy 2 = 1 

In the simple shear tests 

- a x x =  ~ =  a s i n 2 r  
axy = a c o s 2 r  

and we have 

~{(G + F + 4H)sin  2 2r + 2Ncos~ 2r 
+ 2~r ai(G + 2H)sin 2r -= 1 - (G + H ) a i  e . 

In the unmodified Hill theory ~i = 0 and the 
yield criterion predicts that the simple shear stress 
tests will show two maxima and two minima, 
each of equal magnitude. The modification due 
to the Bauschinger term oi accounts for the 
observed differences in the shear stress maxima, 
providing a much better fit to the experimental 
data, as is illustrated in fig. 29. 

The introduction of this Bauschinger term also 
leads to a modification of the strain increment 
relations which allow prediction of the band 
angle in the tensile test. Brown, Duckett, and 
Ward found that there was some latitude in 
obtaining a fit for the band angle in polyethylene 
terephthalate, when there is such a large number 
of disposable constants. They showed that an 
equally good fit could be obtained when the 
Bauschinger term is included, but that the latter 
does not improve the fit significantly. In a recent 
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Figure 29 Graph of yield stress in simple shear versus ~b. 
Dashed line is the best fit obtained from the simple Hill 
theory. Full line is the best fit obtained from the modified 
Hill theory (after Brown et al). 

investigation of tensile deformat ion of polyvinyl- 
chloride, Rider and  Hargreaves [37] found that  
the in t roduct ion  of a Bauschinger term improved 
the fit to the band  angle data  to a very marked 
extent. As no direct measurements  of the 
Bauschinger term had been under taken,  in this 
case the band  angle data  were used in conjunc-  
t ion  with the yield stress data to obta in  a best fit. 

6. Conclusion 
This review has considered in some detail two 
aspects of the yield behaviour  of polymers, 
at tempts to obta in  yield criteria and  the question 
of the viscoelastic na ture  of the yield behaviour.  
Recent  experimental  studies in isotropic poly- 
mers have highlighted the impor tance  of the 
hydrostat ic componen t  of stress, and it has been 
shown that  this also plays an impor tan t  par t  in 
any  theory which at tempts to deal compre- 
hensively with the viscoelastic nature  of  yield 
behaviour.  In  oriented polymers the difference 
between the yield behaviour  in tension and  
compression can be represented formally by 
in t roducing an  internal  compressive stress term 
acting in the or ientat ion direction. The effect of  
or ienta t ion is much larger than  that  due to the 
hydrostatic componen t  of stress, so that  the 
latter may usually be neglected in highly oriented 
polymers. 
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